skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nordlander, Josh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wavelength-selective thermal emitters (WS-EMs) hold considerable appeal due to the scarcity of cost-effective, narrow-band sources in the mid-to-long-wave infrared spectrum. WS-EMs achieved via dielectric materials typically exhibit thermal emission peaks with high quality factors (Qfactors), but their optical responses are prone to temperature fluctuations. Metallic EMs, on the other hand, show negligible drifts with temperature changes, but theirQfactors usually hover around 10. In this study, we introduce and experimentally verify an EM grounded in plasmonic quasi-bound states in the continuum (BICs) within a mirror-coupled system. Our design numerically delivers an ultra-narrowband single peak with aQfactor of approximately 64 and near-unity absorptance that can be freely tuned within an expansive band of more than 10 µm. By introducing air slots symmetrically, theQfactor can be further augmented to around 100. Multipolar analysis and phase diagrams are presented to elucidate the operational principle. Importantly, our infrared spectral measurements affirm the remarkable resilience of our designs’ resonance frequency in the face of temperature fluctuations over 300°C. Additionally, we develop an effective impedance model based on the optical nanoantenna theory to understand how further tuning of the emission properties is achieved through precise engineering of the slot. This research thus heralds the potential of applying plasmonic quasi-BICs in designing ultra-narrowband, temperature-stable thermal emitters in the mid-infrared. Moreover, such a concept may be adaptable to other frequency ranges, such as near-infrared, terahertz, and gigahertz. 
    more » « less
  2. CdO has drawn much recent interest as a high-room-temperature-mobility oxide semiconductor with exciting potential for mid-infrared photonics and plasmonics. Wide-range modulation of carrier density in CdO is of interest both for fundamental reasons (to explore transport mechanisms in single samples) and for applications (in tunable photonic devices). Here, we thus apply ion-gel-based electrolyte gating to ultrathin epitaxial CdO(001) films, using transport, x-ray diffraction, and atomic force microscopy to deduce a reversible electrostatic gate response from −4 to +2 V, followed by rapid film degradation at higher gate voltage. Further advancing the mechanistic understanding of electrolyte gating, these observations are explained in terms of low oxygen vacancy diffusivity and high acid etchability in CdO. Most importantly, the 6-V-wide reversible electrostatic gating window is shown to enable ten-fold modulation of the Hall electron density, a striking voltage-induced metal–insulator transition, and 15-fold variation of the electron mobility. Such modulations, which are limited only by unintentional doping levels in ultrathin films, are of exceptional interest for voltage-tunable devices. 
    more » « less
  3. Abstract Wavelength‐selective absorbers (WS‐absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography‐free fabrication of WS‐absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality‐factors (Q‐factors) and/or multiband TPP‐absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q‐factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q‐factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow‐band and nondispersive WS‐absorbers are needed. Moreover, an open‐source algorithm is developed to inversely design THP‐absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP‐absorbers can realize same spectral resonances with fewer DBR layers than a TPP‐absorber, thus reducing the fabrication complexity and enabling more cost‐effective, lithography‐free, wafer‐scale WS‐absorberss for applications such as free‐space communications and gas sensing. 
    more » « less